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ABSTRACT
Recent advancements in language models (LMs) have significantly improved 
language processing capabilities; however, these models remain less efficient than 
human learning, especially when trained on developmentally plausible data volumes 
similar to those encountered by children (Warstadt & Bowman, 2022; Linzen, 2020). 
The inefficiency is even more pronounced in second language (L2) acquisition 
contexts, where cross-linguistic transfer is a key phenomenon (Papadimitriou & 
Jurafsky, 2020; Yadavalli et al., 2023). This study evaluates L2 training methods in 
neural language models by examining mutual L1-L2 influences during learning with 
developmentally plausible data volumes. We propose two approaches to mitigate 
catastrophic forgetting: the One-Stage Training (OST) method, which integrates L1 
and L2 learning into a single stage, and the One-Stage Mixed Training (OSMT) 
method, which refines OST by incorporating L1 data into the L2 stage for more 
realistic simulation of bilingual learning. Through continuous syntactic evaluations 
throughout training, we analyzed how L1 performance changes during L2 
acquisition and how cross-linguistics transfer emerges in Korean and English. The 
results indicate that OST and OSMT effectively mitigated catastrophic forgetting and 
supported more stable learning compared to the conventional Two-Stage Training 
method. OSMT achieved superior integration of L1 and L2 structures while 
revealing negative transfer effects from Korean (L1) to English (L2). These findings 
provide valuable insights into both neural model training and human-like L2 
acquisition processes.

Keywords: developmentally plausible data, cross-linguistic transfer, second language 
acquisition, neural language models, L2 language models, catastrophic forgetting

1. Introduction 

For decades, language models have been used to simulate human language 

learning and processing (Elman, 1990; Hale, 2001; Reali & Christiansen, 2005). 

With advances in deep learning, artificial neural-network language models have been 

advanced by scaling up both training data and model parameters. Models such as 
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GPT-3 (Brown et al., 2020) exemplify this trend, using enormous datasets and 

extensive computational power to achieve high performance across various tasks. 

However, Warstadt and Bowman (2022) and Linzen (2020) argue that the sheer 

volume of data is the primary advantage modern language models have over 

humans. When confined to developmentally plausible data volumes, these models 

significantly underperform on benchmarks evaluating human-like syntactic and 

semantic behavior (van Schijndel, 2019; Zhang et al., 2020). Recognizing these 

limitations has led researchers to explore alternative approaches that mirror the 

efficiency of human language acquisition.

Building on the idea of using developmentally plausible data volumes for training, 

Huebner et al. (2021) introduced BabyBERTa, a scaled-down version of the 

RoBERTa model, designed to simulate the language input available to children 

between the ages of one and six. BabyBERTa was trained on the AO-CHILDES 

corpus, which consists of approximately five million words of American-English 

transcribed child-directed speech. The model employs dynamic masking and 

hyper-parameters optimized for small-scale language acquisition experiments, using 

only eight layers, eight attention heads, 256 hidden units, and an intermediate size 

of 1,024. By duplicating input sequences and applying novel random masks, 

BabyBERTa effectively receives a more extensive language experience, analogous 

to that of a six-year-old child. Despite having fifteen times fewer parameters and 

6,000 times fewer words than RoBERTa-base, BabyBERTa demonstrated 

comparable grammatical knowledge acquisition. The results highlighted that the 

model could achieve high performance with significantly less data, underscoring the 

potential for using child-directed language to develop efficient language models.

Following the success of BabyBERTa, the BabyLM Challenge (Warstadt et al., 

2023) was introduced to further investigate and promote the development of 

language models trained on child-directed data. The challenge encourages the 

creation of models that can achieve high performance with limited and contextually 

rich data, much like the data available to human children. By focusing on smaller, 

more specialized datasets and leveraging insights from cognitive science, the 

movement to build developmentally plausible models not only pave the way for 

more efficient and potentially more robust language models, but also offer profound 

insights into human language acquisition.

Related to human language acquisition and development, an interesting topic that 

recent studies of natural language processing (NLP) have paid attention to is 

cross-linguistic transfer effects, where a speaker’s first language (L1) influences 
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second language (L2) acquisition (e.g., Conneau et al., 2018). Cross-linguistic 

transfer, a key concept in linguistics and cognitive science, occurs as structural or 

lexical features from L1 affect learning in L2. This transfer can be positive, aiding 

learning when languages share structures, or negative, creating challenges when 

there are significant linguistic differences (Jarvis & Pavlenko, 2007). A long-standing 

debate on negative transfer centers on the Representational Deficit Approach and 

the Computational Difficulty Approach. The Representational Deficit Approach 

links poor L2 performance to incomplete or permanently deficient L2 knowledge, 

evidenced by advanced learners' struggles with morphology and grammaticality 

judgments (Hawkins & Chan, 1997; Johnson & Newport, 1989, 1991). Conversely, 

the Computational Difficulty Approach attributes errors to performance issues rather 

than impaired syntax, aligning with the Missing Surface Inflection Hypothesis 

(Haznedar & Schwartz, 1997; Prévost & White, 2000). This view emphasizes the 

role of L1 in performance challenges, suggesting that learners’ errors reflect 

processing difficulties rather than fundamental knowledge deficits.

This cross-linguistic transfer has been expanded to research on neural models. For 

instance, Papadimitriou and Jurafsky (2020) found that inductive biases acquired 

from diverse linguistic datasets as well as non-linguistic datasets with distinct 

patterns, such as music and code, can enhance language model learning, and 

Yadavalli et al. (2023) showed that conversational data facilitated language 

acquisition more than scripted data, with negative transfer increasing with linguistic 

distance. Oba et al. (2023) observed that pretraining on L1 improves L2 learning, 

especially for syntax and morphology, depending on language similarity. Research 

also explored Korean-English syntactic transfer (Koo et al., 2024), adding insights 

into cross-linguistic challenges with these structurally diverse languages.

These studies employ various methods for building L2 models, typically classified 

into fine-tuning and continual learning. Papadimitriou and Jurafsky (2020) and 

Yadavalli et al. (2023) fine-tuned the model after L1 learning for specific purposes. 

In other words, these studies aimed to adjust only the word embeddings for L2 while 

maintaining the inductive bias of L1. In contrast, continual learning, as seen in Oba 

et al. (2023) and Koo et al. (2024), involves sequential L1 and L2 learning stages. 

Both approaches adopt a Two-Stage Training process where L1 learning is 

completed before L2 begins, reusing the model across stages.

However, these methods expose L2 models to catastrophic forgetting, where L1 

knowledge is overwritten during L2 learning (Li & Hoiem, 2017; Lopez-Paz & 

Ranzato, 2017). Catastrophic forgetting occurs when neural network representations 
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for new tasks interfere with those formed for prior tasks due to shared neural 

resources (Kemker et al., 2018; Kaushik et al., 2021). This stability-plasticity 

dilemma, where the model must balance retaining old knowledge and learning new 

information, poses a challenge in effective L2 learning without memory loss of L1 

(Kirkpatrick et al., 2016).

The impact of catastrophic forgetting questions the validity of the L2 model itself. 

Natural language acquisition suggests that L2 is built on a foundation of L1 

knowledge (McManus, 2021). If L1 is largely forgotten and only recent L2 

knowledge is retained, it challenges the core concept of L2 acquisition as a 

continuation of L1-based learning. Furthermore, while models may retain some L1 

inductive bias, this does not guarantee a true knowledge transfer to L2, making 

catastrophic forgetting a critical issue in designing L2 models. Therefore, to develop 

more plausible L2 models and get a better understanding of cross-linguistic transfer, 

it is essential to address catastrophic forgetting by considering L2 training methods 

that preserve both L1 and L2 knowledge effectively.

This study aims to evaluate various training methods for L2 learning within neural 

language models, specifically focusing on mitigating catastrophic forgetting, a 

phenomenon where previous L1 knowledge degrades during L2 learning. Inspired 

by the ‘scaffolding’ experiment of Huebner et al. (2021), which showed that the 

ordering of training data in a single training stage could significantly influence 

grammatical knowledge retention and development even when the model ultimately 

learns the exact same data, suggesting that starting with easier data could serve as 

a better foundation for learning more complex data, this study proposes two novel 

methods: One-Stage Training (OST) and One-Stage Mixed Training (OSMT). OST 

involves learning L1 followed immediately by L2 within a single training stage, 

while OSMT builds on OST by interweaving L2 training data with L1, facilitating 

blended dual-language exposure. By observing models trained using these methods 

alongside the conventional TST approach, the study tracks shift in syntactic 

knowledge and investigates cross-linguistic transfer effects between Korean and 

English. The research questions are as follows:

Q1. How does L1 performance change as L2 learning progresses under different 

training methods, and what does this reveal about the phenomenon of 

catastrophic forgetting?

Q2. How does L2 performance develop during these training approaches, and in 

what ways does it relate to catastrophic forgetting?



Language Research 60-3 (2024) 323-345 / Jaemin Lee & Jeong-Ah Shin 327

Q3. How does cross-linguistic transfer between Korean and English emerge in 

shared and distinct syntactic paradigms across both languages?

We hypothesize that catastrophic forgetting will appear in the conventional TST 

method with rapid L1 performance decline, while OST and OSMT should show 

gradual declines as Huebner et al.’s (2021) scaffolding experiment demonstrated that 

the data learned earlier influences the model's ability to process data learned later 

and starting with easier data could serve as a better foundation for learning more 

complex data. Furthermore, considering Yadavalli et al. (2023), which demonstrated 

that greater linguistic distance leads to stronger negative transfer effects, along with 

the significant linguistic distance between Korean and English (Chiswick & Miller, 

2005), the conventional Two-Stage Training is expected to show faster L2 

performance gains, whereas OST and OSMT should demonstrate more gradual 

improvements, suggesting stronger L1 influence. The linguistic distance between 

Korean and English is expected to negatively impact L2 learning, leading to negative 

transfer effects in most of the paradigms, although positive transfer effects are also 

expected in some paradigms where both languages are syntactically similar.

2. Experiments

We conducted two experiments to evaluate the impact of different L2 training 

methods on cross-linguistic transfer and catastrophic forgetting in neural language 

models. Experiment 1 set L1 as English and L2 as Korean, focusing on L1 syntactic 

retention as L2 learning progresses. Experiment 2 set L1 as Korean and L2 as 

English, evaluating how prior L1 knowledge influences L2 learning. An additional 

model trained solely on English was included for baseline comparison, tracking L2 

English performance changes as L2 training progressed.

2.1. Methods

This study tested three L2 training methods to examine L1 retention and patterns 

of L2 acquisition (see Figure 1):

a. Conventional Two-Stage Training (TST): The model first learns L1, followed 

by L2 in separate stages. In this model, once L1 learning is fully completed 
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and the initial training process has terminated, the trained L1 model is loaded 

as the starting point for L2 learning. Therefore, the L1 model serves as the 

initial state when L2 learning begins. Common in prior L2 research, it often 

faces catastrophic forgetting, where L1 knowledge is overwritten during L2 

learning.

b. One-Stage Training (OST): L1 and L2 are learned sequentially within a single 

stage. In OST, training does not end upon the completion of L1 learning; 

instead, the data is switched to L2, and training continues seamlessly. This 

approach aims to avoid catastrophic forgetting by training both languages 

continuously, facilitating greater cross-linguistic transfer.

c. One-Stage Mixed Training (OSMT): A variation of OST, in which L2 learning 

includes mixed L1 and L2 inputs. This simulates real-world L2 acquisition 

more closely by reinforcing L1 knowledge during L2 learning. For example, 

with a 5-million-word dataset for L1 and 1 million for L2, OSMT merges the 

last portion of L1 data with L2 data, resulting in a 6-million-word dataset. 

Figure 1. Overall structure of two experiments

Using these methods, Experiment 1 focused on L1 English syntactic retention as 

L2 Korean learning progresses. The syntactic performance of L1 was measured every 
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10,000 training steps to track L1 retention during L2 acquisition. Experiment 2 

evaluated how prior L1 Korean knowledge influences L2 English learning. An 

additional model which was trained solely and normally on English was included 

for baseline comparison1).

2.2. Model Training and Evaluation for Second Language Acquisition

2.2.1. Model

The BabyBERTa model (Huebner et al., 2021), a scaled-down version of 

RoBERTa, was chosen for its effectiveness in syntactic learning with limited data. 

BabyBERTa uses dynamic masking to create different masking patterns for repeated 

sentences, simulating human-like exposure with a small dataset of 5 million words. 

This dynamic masking prevents simple data repetition, making BabyBERTa suitable 

for sequential and continuous L1 and L2 learning in our experiments. Given its 

alignment with human-like language acquisition, BabyBERTa is well-suited for 

studying L1-L2 transfer effects.

The original BabyBERTa model utilized a monolingual vocabulary of 8,912 

words. To create a bilingual tokenizer, we applied Byte-Pair Encoding (BPE) to both 

L1 and L2 data, expanding the vocabulary size to 16,384 words, effectively doubling 

its capacity to accommodate both languages. In TST, an L1-specific tokenizer was 

used initially, then replaced with a bilingual tokenizer for L2 training. OST and 

OSMT employed the bilingual tokenizer throughout all training stages.

2.2.2. Data

For all experiments, English was the standard evaluation language. In Experiment 

1, L1 was set as English and L2 as Korean, with English data from the 

AO-CHILDES corpus (5 million words) and Korean data from K-CDS (1.2 million 

words). Experiment 2 used Korean as L1 and English as L2, with Korean data from 

the Modu Corpus (4.5 million words) from National Institute of Korean Language 

(2020) and English data from L2-textbook (1.5 million words). In each experiment, 

1) The code to reproduce our experiments and the data used for training and evaluation can be found 
at https://github.com/jeongahshin/babyLM_L2.
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L1 data constituted around 75-80% of the training data, simulating typical second 

language acquisition where L1 is predominant. The overall size of the datasets used 

in the two experiments is similar. However, there is a significant difference in the 

total training steps: 230k for Experiment 1 and 150k for Experiment 2. This 

discrepancy arises because, although the datasets are comparable in terms of the 

number of words, the length of sentences comprising the datasets differs. In other 

words, since the model typically processes one sentence as a unit of training, even 

though the number of words is the same, the sentences in the dataset used for 

Experiment 2 are longer than those in Experiment 1.

2.2.3 Syntactic Knowledge Evaluation

The Zorro test set (Huebner et al., 2021), an adaptation of the BLiMP benchmark 

(Warstadt et al., 2020), was used to evaluate syntactic knowledge. Zorro assesses 

specific syntactic phenomena with minimal pairs of grammatical and ungrammatical 

sentences, each pair designed to test a distinct syntactic structure (e.g., subject-verb 

agreement). The model scores sentence pairs based on cross-entropy error, with 

accuracy calculated as the proportion of pairs correctly judged. In contrast to 

BLiMP, which imposed no specific limitations on vocabulary, Huebner et al. (2021) 

constructs test sentence pairs using the restricted vocabulary of BabyBERTa. This 

streamlined vocabulary ensures that the model’s syntactic performance is not 

undervalued due to constraints in its lexical capabilities.

Zorro encompasses 13 syntactic phenomena and 23 paradigms, with each 

paradigm containing 4,000 sentences (2,000 pairs). This syntactic evaluation allows 

for consistent tracking of L1 and L2 knowledge retention and cross-linguistic transfer 

effects throughout the experiments.

3. Results

3.1. Experiment 1: L1 Retention under L2 Training

3.1.1. General Results and Analysis

Experiment 1 examined the effects of different L2 training methods—Two-Stage 
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Training (TST), One-Stage Training (OST), and One-Stage Mixed Training (OSMT)

—on the retention of L1 knowledge and acquisition of L2 syntactic competence. 

It evaluated how each method influences cross-linguistic transfer and catastrophic 

forgetting, with the focus on syntactic knowledge transfer between English (L1) and 

Korean (L2).

Figure 2 shows the learning curves for English (L1) syntactic performance across 

three phases, represented by different training steps. Initially, up to the 150k step, 

all methods trained exclusively on English, with L1 accuracy increasing similarly 

across TST, OST, and OSMT (TST: 0.705, OST: 0.712, OSMT: 0.712). During the 

intermediate phase (150k-190k), OSMT began L2 Korean training while continuing 

with L1 English, resulting in a learning curve similar to TST and OST, which 

remained focused on English only (TST: 0.744, OST: 0.751, OSMT: 0.749).

In the final phase (post-190k steps), TST and OST transitioned to L2 Korean, 

showing significant divergence. TST exhibited a sharp drop in L1 English accuracy, 

reflecting catastrophic forgetting, while OST’s performance declined more gradually. 

In contrast, OSMT maintained stable L1 performance, achieving the highest 

accuracy among the methods by the end of training (TST: 0.510, OST: 0.631, 

OSMT: 0.754). 

These trends suggest that OSMT’s continuous exposure to both languages helps 

preserve L1 syntactic knowledge, while TST’s separate training stages hinder L1 

retention due to abrupt learning shifts.

Figure 2. Learning curve of L1 English
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3.1.2. Paradigm-Specific Analysis

To analyze specific syntactic patterns, Figure 3 shows accuracy by paradigm. 

While general learning curves across paradigms resemble the trends in Figure 2, 

certain paradigms show unique patterns; for example, OST outperforms OSMT in 

agreement_subject_verb, while OSMT excels in superlative quantifiers and 

binding_principle_a. These variations suggest that mixed L2 exposure affects specific 

L1 syntactic structures differently.

Figure 3. Learning curve of L1 English by paradigm

To statistically test these effects, critical points at 190k (L1 training ending point 

in TST) and 230k training steps were established. These points serve to highlight 

specific stages of language learning, allowing for a clearer comparison of L1 

performance under distinct training conditions. To verify the reliability of these 

calculated accuracy differences, paired t-tests were conducted. The significance level 

was set at 0.05, and items with a p-value lower than this threshold (p<0.05) were 

marked with an asterisk.
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At the 190k step, the OST model had completed L1 English training, representing 

a pure L1 English model, while the OSMT model was simultaneously learning L1 

English and L2 Korean. This allows a direct comparison to observe how mixed 

L1-L2 exposure impacts syntactic retention in contrast to an L1-exclusive learning 

stage. By 230k steps, OSMT had accumulated more total training data, yet the 

amount of English data remained constant from 190k, controlling for the effect of 

additional L2 exposure on L1 performance without an increase in L1 data.

In the comparison with the OSMT model at the 190k step, significant accuracy 

decreases, interpreted as negative transfer effects, were observed in six paradigms, 

including all agreement_subject_verb and agreement_determiner_noun paradigms 

(e.g., across_1_adjective) and argument_structure (e.g., dropped_argument). No 

significant increases in accuracy, or positive transfer effects, were observed. This 

suggests that L2 Korean may influence the formation of L1 English syntactic 

knowledge. However, it may also reflect reduced exposure to L1 English.

Further analyses comparing the OSMT model at 190k and 230k steps with OST 

at 190k allowed us to control for L1 English training data scarcity effects. As shown 

in Table 1, at 230k, significant negative transfer effects were limited to two paradigms 

in OSMT (agreement_subject_verb: across_relative_clause, across_prepositional_phrase), 

and a single significant positive effect was observed in binding_principle_a. While the 

overall trends of performance increases and decreases remained similar, the magnitude 

of decreases lessened, with some differences becoming statistically insignificant.

Certain paradigms, such as superlative in quantifiers and all npi_licensing 

paradigms, exhibited substantial performance changes, though these differences were 

not statistically significant. As shown in Figure 3, these paradigms displayed 

fluctuating learning curves, contrasting with the stable trends seen in other 

paradigms. This indicates that the model struggles to generalize syntactic knowledge 

in these specific paradigms, potentially due to their complexity or limited 

representational consistency in the training data.

Phenomena Paradigms
OSMT(190k) 

vs. OST(190k)
OSMT(230k) 

vs. OST(190k)

agreement_
subject_verb

across_relative_clause -0.059* -0.058* 

across_prepositional_phrase -0.052* -0.042* 

in_question_with_aux -0.061* -0.025 

in_simple_question -0.037* -0.014 

Table 1. Performance difference between critical points
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Phenomena Paradigms
OSMT(190k) 

vs. OST(190k)
OSMT(230k) 

vs. OST(190k)

agreement_
determiner_

noun

across_1_adjective -0.024* -0.016 

between_neighbors -0.009 -0.007 

filler-gap
wh_question_subject -0.013 -0.004 

wh_question_object -0.020 0.020 

island-effects adjunct_island 0.023 0.034 

coordinate_structure_constraint 0.022 -0.001 

quantifiers existential_there 0.001 -0.003 

superlative 0.088 0.116 

npi_licensing only_npi_licensor 0.198 0.124 

matrix_question -0.095 -0.110 

argument_
structure

transitive 0.009 0.002 

dropped_argument -0.031* -0.010 

swapped_arguments -0.020 -0.020 

irregular verb 0.007 0.003 

anaphor_
agreement

pronoun_gender 0.004 -0.003 

ellipsis n_bar 0.008 0.049 

binding principle_a 0.040 0.059* 

case subjective_pronoun -0.031 -0.020 

 *p<.05

Table 1. Continued

3.2 Experiment 2

3.2.1 General Results and Analysis

Experiment 2 shifts focus, with Korean as L1 and English as L2, to analyze L1 

impact on L2 acquisition. Figure 4 presents L2 English learning curves across three 

phases. Up to 90k steps, all models focus on Korean, yielding no significant L2 

gains. Starting at 90k, OSMT introduces L2 English, showing gradual improvements 

from 0.529 to 0.614. The other methods transition to L2 English after 120k steps, 

with all models showing enhanced performance: TST exhibits the steepest gain, OST 

shows moderate improvement, and OSMT reaches the highest final accuracy (0.663).
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Figure 4. Learning curve of L2 English

Comparison with an English-only model (En(L1)) reveals that TST’s learning 

curve closely resembles that of a monolingual learner (see Figure 5), suggesting 

TST's limited L1 retention has little impact on L2 syntactic stability. OST and 

OSMT’s gradual improvement suggest they maintain L1 influence, with OSMT’s 

mixed exposure supporting a balanced learning curve across both languages.

Figure 5. Final section with en(L1) English model

3.2.2 Paradigm-Specific Analysis
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Figure 6. Learning curve of L2 English by paradigm

Figure 6 presents paradigm-specific accuracy for L2 English acquisition, revealing 

complex patterns not observed in Experiment 1. In contrast to the generally stable 

trends across paradigms in Figure 3 in Experiment 1, Figure 6 shows sharp 

fluctuations in accuracy. When limiting the analysis to post-120k training steps, 

specific paradigms—such as agreement_determiner_noun, quantifiers, and the 

transitive paradigm within argument_structure—align more closely with the average 

trend, indicating gradual improvement in syntactic performance under different 

training methods.

To investigate the transfer effects more rigorously, we compared the performance 

of TST, OST, and OSMT with a monolingual English model (En(L1)) as a baseline, 

allowing us to control for L1 Korean’s influence on L2 English learning (see Table 

2). The results indicate significant negative transfer effects in paradigms such as 

agreement_subject_verb and argument_structure, where Korean’s syntactic structures 

diverge from English. OST exhibited negative transfer in 11 paradigms, reflecting the 

influence of Korean syntactic interference during L2 English learning. In contrast, 

TST reduced negative transfer effects to only five paradigms, suggesting that its staged 

approach minimizes L1 interference, albeit with less effective integration between L1 

and L2. OSMT demonstrated the strongest mitigation of negative transfer, with 
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significant reductions in paradigms like coordinate_structure_constraint and 

dropped_argument, as well as enhanced stability in paradigms where OST showed 

sharp declines. This highlights OSMT's ability to balance L1 and L2 inputs, effectively 

reducing syntactic interference through mixed exposure.

While negative transfer dominated in incompatible paradigms, positive transfer 

effects emerged in the cases of structural alignment between Korean and English. 

Paradigms such as binding_principle_a and superlative benefited from structural 

compatibility, where OSMT outperformed both TST and OST due to its integrated 

L1-L2 training. These results emphasize the importance of mixed training methods 

in leveraging structural similarities to enhance L2 acquisition. TST, despite reducing 

negative transfer, does not capitalize on positive transfer opportunities because of 

its segmented learning stages. OST, while allowing for continuous training, struggles 

with mitigating L1 interference in paradigms with structural discrepancies. OSMT, 

by comparison, strikes a balance, reducing negative transfer while amplifying positive 

effects, making it the most effective method for managing L1 transfer dynamics. 

These findings underscore the value of OSMT’s mixed training approach in 

addressing the challenges of negative transfer while maximizing the benefits of 

positive transfer in bilingual neural models.

Phenomena Paradigms TST OST OSMT

agreement_
subject_verb

across_relative_clause 0.000 -0.015* -0.008

across_prepositional_phrase -0.035 -0.045* -0.046*

in_question_with_aux 0.034 -0.016* 0.008

in_simple_question 0.047* -0.028* 0.000

agreement_
determiner_

noun

across_1_adjective -0.036* -0.072* -0.008

between_neighbors -0.060* -0.118* 0.012

filler-gap
wh_question_subject 0.178 0.176* 0.184

wh_question_object -0.335* -0.509* -0.301*

island-effects adjunct_island 0.004 -0.083* -0.096*

coordinate_structure_constraint 0.100 0.087 0.125

quantifiers existential_there -0.060 -0.083* -0.041

superlative 0.070 -0.006 0.105

Table 2. Performance difference between En(L1) and other models
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Phenomena Paradigms TST OST OSMT

npi_licensing only_npi_licensor -0.061 -0.042 0.024

matrix_question -0.077 -0.115 -0.092

argument_
structure transitive -0.326* -0.347* -0.322*

dropped_argument 0.136* 0.156* 0.098

swapped_arguments 0.288* 0.271 0.239

irregular verb -0.061* -0.029 -0.035

anaphor_
agreement pronoun_gender 0.001 0.001 0.002

ellipsis n_bar -0.041 -0.038 0.076*

binding principle_a 0.086 0.011 0.014

case subjective_pronoun 0.021 0.022 0.022

*p<.05

Table 2. Continued

4. Discussion

This study evaluated the impact of different L2 training methods—Two-Stage 

Training (TST), One-Stage Training (OST), and One-Stage Mixed Training (OSMT)

—on cross-linguistic transfer and catastrophic forgetting in neural language models. 

These experiments provide insight into how each method influences the preservation 

of L1 knowledge, the dynamics of L2 acquisition, and the syntactic transfer effects 

between structurally divergent languages like Korean and English.

4.1. Cross-Linguistic Transfer and Catastrophic Forgetting

Unlike TST, both OST and OSMT demonstrated enhanced resistance to 

catastrophic forgetting, although they achieved this through distinct methods. OST 

combines L1 and L2 learning into a single stage, unlike TST’s separated approach. 

This unified learning setup in OST led to a more gradual decline in L1 performance 

during L2 training. By merging L1 and L2 learning into a single phase, OST appears 

to reduce the severity of catastrophic forgetting. This continuous dual-language 



Language Research 60-3 (2024) 323-345 / Jaemin Lee & Jeong-Ah Shin 339

exposure helps the model retain a baseline of L1 knowledge as it acquires L2, 

underscoring the benefits of one-stage training in preserving earlier syntactic 

knowledge.

OSMT, which mixed L1 and L2 data at each training step, was even more 

effective in maintaining L1 knowledge during L2 acquisition. Notably, OSMT even 

showed slight gains in L1 performance throughout L2 training, suggesting that this 

balanced, alternating input strategy not only stabilizes but may also reinforce 

previously learned structures. By continually switching between English and Korean 

inputs, OSMT better addresses the plasticity-stability dilemma than OST, facilitating 

new L2 learning while protecting L1 knowledge. This continuous, balanced 

integration highlights OSMT’s strength in fostering bilingual learning with minimal 

interference.

In Experiment 2, TST demonstrated the quickest increase in L2 English 

performance, mirroring the rapid progress typical of initial L1 learning. This fast 

improvement in English accuracy, similar to that of a monolingual English model, 

suggests that the model’s L2 learning was largely unaffected by prior L1 Korean 

knowledge—a strong indicator of catastrophic forgetting, where L1 knowledge fails 

to carry over into L2 acquisition. Conversely, OST and OSMT showed more 

incremental gains in L2 English, suggesting ongoing influence from L1 Korean, 

which helped guide and stabilize the learning process. These results from Experiment 

2 align with those of Experiment 1, where continued L1 exposure in OST and 

OSMT contributed to mitigating catastrophic forgetting, underscoring the value of 

integrated training for maintaining bilingual knowledge retention and acquisition.

4.2. Syntactic Transfer Effects between L1 and L2

The experiments also highlighted the syntactic transfer effects, particularly the 

differences in transfer dynamics across training methods. In Experiment 1, 

paradigm-specific analyses revealed nuanced interactions between English (L1) and 

Korean (L2) syntactic knowledge. Transfer effects were observed in specific syntactic 

paradigms, with both positive and negative impacts depending on structural 

compatibility between the languages.

Negative transfer was most evident in paradigms like agreement_subject_verb, 

where Korean lacks direct equivalents to English grammatical structures. TST, by 

segmenting L1 and L2 training, showed pronounced negative transfer in these areas, 

as the lack of integrated learning resulted in limited cross-linguistic adaptability. In 
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OST and OSMT, however, these effects were mitigated, with OSMT showing the 

least interference. The mixed exposure in OSMT allowed the model to gradually 

adapt to L2 structures, particularly in incompatible paradigms, achieving a stable 

balance between L1 and L2. This suggests that OSMT’s continuous training method 

enables the model to reconcile divergent syntactic rules more effectively than 

separate or sequential learning.

Positive transfer effects, on the other hand, were observed in paradigms with 

structural alignment, such as binding_principle_a. Here, both Korean and English 

share compatible anaphoric structures, allowing the model to leverage prior L1 

syntactic knowledge to enhance L2 learning. OSMT, with its integrated L1-L2 

training, showed the strongest positive transfer effects, indicating that mixed data 

input allows the model to exploit structural similarities more effectively. This finding 

underscores the importance of training approaches that accommodate structural 

alignment in bilingual language models, as they enable models to generalize 

knowledge across languages with overlapping features.

In Experiment 2, similar patterns were evident. The rapid improvement in English 

syntactic accuracy in TST was again achieved with minimal influence from L1 

Korean, highlighting a reduced impact of cross-linguistic transfer when training 

stages are separated. OSMT, however, consistently demonstrated balanced transfer 

effects, achieving a stable learning trajectory even in syntactically incompatible 

paradigms. These results indicate that a mixed L1-L2 training approach is more 

conducive to sustainable bilingual learning.

4.3. Broader Implications for Second Language Acquisition Theory

The findings from this study offer an empirical basis for exploring the implications 

of two key perspectives in second language acquisition, the Representational Deficit 

Approach (RDA) and the Computational Difficulty Approach (CDA). According to 

the RDA, adults struggle with L2 because of inherent knowledge gaps, implying 

a lasting deficiency in L2 acquisition (Hawkins & Chan, 1997). In contrast, the CDA 

attributes these challenges to performance issues, pointing to the substantial role of 

learners’ first language (L1) as a factor (Haznedar & Schwartz, 1997; Prévost & 

White, 2000). The fact that OSMT’s performance either stabilizes or improves over 

time, despite the introduction of L2 Korean, indicates the model’s ability to integrate 

syntactic knowledge from multiple languages. This outcome supports the CDA view, 

suggesting that sufficient exposure and computational resources can help models 
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overcome initial L2 learning challenges. The observed reduction in negative transfer 

effects with OSMT underscores the idea that computational limitations, rather than 

intrinsic knowledge deficits, are primarily responsible for L2 difficulties.

4.4. Limitations and Future Research Directions

While this study provides valuable insights into the dynamics of cross-linguistic 

transfer and catastrophic forgetting in neural language models, several limitations 

should be noted. The study’s focus on two languages with typologically distinct 

structures (Korean and English) provides a robust test case but may limit the 

generalizability of findings across other language pairs. Future research should 

explore a broader range of languages, including typologically similar pairs, to assess 

whether one stage training methods like OST and OSMT offer comparable benefits 

across varying degrees of structural similarity.

Another limitation of this study lies in its methodology for analyzing L1 transfer. 

While the study compares TST, OST, and OSMT with monolingual language model 

to control for L1 influence on L2 learning, this approach does not fully align with 

the methodological rigor outlined by Jarvis (2000). According to him, identifying 

L1 transfer requires satisfying three conditions: (a) intra-L1-group similarities, (b) 

inter-L1-group differences, and (c) L1-IL performance similarities, which necessitate 

multiple L1 groups for comparison. Although many studies have discussed L1 effects 

without strictly adhering to this framework, the absence of multiple L1 groups in 

this study limits its ability to definitively attribute observed effects to L1 transfer. 

Future studies need to consider the methodological constraint in interpreting the 

findings.

Additionally, this study primarily focused on syntactic knowledge as measured 

by the Zorro test set. Future work could expand this focus to include semantic and 

pragmatic knowledge, examining whether mixed training approaches similarly 

benefit other language dimensions. Furthermore, investigating the potential impact 

of different data sizes and composition ratios within mixed training methods could 

provide more granular insights into the optimal balance between L1 and L2 input 

for cross-linguistic transfer.

Finally, while the experiments employed models with relatively limited data 

exposure compared to real-world neural models, scaling these findings to larger 

architectures and datasets could reveal further insights. Future studies should 

examine whether the benefits of OSMT in managing catastrophic forgetting and 
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transfer effects hold under more extensive data conditions, which are typical for 

state-of-the-art language models.

5. Conclusion

In conclusion, this study demonstrates that one stage training methods like OST 

are effective in retaining L1 knowledge while facilitating L2 acquisition, particularly 

in managing catastrophic forgetting and cross-linguistic transfer. Furthermore, we 

show that mixed training methods like OSMT amplify this effect. By continuously 

integrating L1 and L2 inputs, OSMT achieves a balance between language retention 

and adaptation, offering a robust approach for bilingual neural models. These 

findings have significant implications for the design of multilingual language models 

with developmentally plausible data volume, supporting the use of mixed training 

to enhance cross-linguistic transfer in a way that mirrors human-like language 

learning processes. Through continued exploration of training methods and linguistic 

structures, future research can further optimize bilingual language models, 

contributing to a deeper understanding of cross-linguistic effects and more versatile 

and human-like NLP systems.
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